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Convection effects in the melt of a vertical Bridgman furnace, used for solidifying a
dilute binary alloy, are known to cause significant, and undesirable, non-uniformity in
the alloy. We have found previously that non-axisymmetry significantly degrades the
performance of the furnace at large Rayleigh number, Ra, and small Biot number,
B. There have been a number of studies on improvement of the alloy quality by the
introduction of additional forces into the melt flow – magnetic forces or d’Alembert
forces due to various sorts of acceleration of the ampoule. In this paper, we explore the
effects on the radial segregation generated by rotating the ampoule about its vertical
axis. We determine that the magnitude of segregation is proportional to the product
of B and the thickness of the thermal layer on the crystal–melt interface. As the
rotation, as measured by a Taylor number,T, increases beyond O(Ra1/3), the thermal
layer thickens and so the segregation increases. Finally, at T = O(Ra1/2), the thermal
adjustment occurs on outer scales, and hence the solutal concentration increases to
O(B). Hence rotation about the vertical axis actually degrades performance!

1. Introduction
In two previous papers (Foster 1997, 1999) we considered the steady-state operation

of a vertical Bridgman apparatus for processing a dilute binary alloy, in the case when
either the thermal or Rayleigh number is large, and also the Biot number is small. The
two-dimensional (and axisymmetric) analysis of the first paper was extended in the
second to include effects of azimuthally varying heating at the sidewall. In both cases,
we theoretically verified what has already been found in both experiment and theory
(see, for example, Adornato & Brown 1987; Xiao et al. 1966; and Tanveer 1994): the
radial distribution of the dopant in the other metal is highly non-uniform, lessening
the usefulness of the product. Such furnaces are also utilized for single-component
materials, but the detailed asymptotic results given below are not relevant to that
case. No doubt similar asymptotic methods can be used for such a single-component
situation as well, but the concentration field is intimately connected to the thermal
and velocity fields in most of the parameter ranges of this paper, and so no simple
limit of the results can be used to generate results for the no-solute case.

To first set the geometrical configuration, figure 1 is a schematic of a radial section of
the furnace. The ampoule has radius a, with the radial coordinate made dimensionless
with that quantity. The coordinate system is chosen so that the crystal–melt interface
is located at z = 0 for the idealized one-dimensional case, when there is no heat flux
through the boundaries. With heat transfer, the interface is at z = Z(r, θ), so the
melt occupies that region above z = Z , and the solid below. The overall temperature
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Figure 1. Geometrical configuration of the furnace.

difference in the furnace, from z = L1 to z = −L2, is denoted by ∆T . Heat is
transferred through the sidewalls for z > zI and z < −z̄I; the region between is taken
to be perfectly insulated. The two parameters whose magnitudes primarily govern the
performance of this device are the Rayleigh number, and the Biot number, defined as

Ra =
gα∆Ta3

κν
, B =

ha

k
, (1.1)

where ν and κ are the kinematic viscosity and thermal diffusivity of the melt, and
k is its thermal conductivity; h is the convection coefficient at the outer wall of
the ampoule. There is also a solutal Rayleigh number defined later which is not as
important to the work presented here. Foster (1997, 1999) shows that for large Ra,
the non-uniformity in the dopant concentration scales with BRa−1/6. The choice of
Biot number and the question of conduction through the ampoule wall is deferred
until the discussion of boundary conditions in § 2.

Moon, Kim & Ro (1997) and Weber, Neumann & Müller (1990), among others,
have suggested that some procedure for stirring the melt should result in more
homogeneity in the crystal. In this paper, we examine one such idea: stirring the
melt by means of Coriolis forces due to the rigid rotation of the ampoule about its
vertical axis. Both experiments and some prior theoretical work indicate that not only
does the radial segregation improve, but the onset of interfacial instability is delayed
to larger pulling speeds with the addition of rotation (Weber et al. 1990). However,
some more recent numerical work, by Lee & Pearlstein (1998), indicates that if the
rotation axis is aligned with gravity, then the rotation actually makes segregation
worse. Before proceeding to the analysis, we review briefly the qualitative features of
the zero-rotation results. More details may be found in Foster (1999).

In everything that follows in this paper, we shall be exploring the ‘thermally
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Figure 2. Schematic of the flow field.

dominant’ case, for which the thermal Rayleigh number in (1.1) is much larger than
a solutal Rayleigh number.

1.1. Synopsis of the zero-rotation Bridgman furnace

The flow field for a non-rotating furnace, as deduced by Foster (1997, 1999), is shown
in schematic form in figure 2. The flow is driven by heat transfer through the sidewall,
which causes fluid to rise in the boundary layer, Region I, whose width scales as
Ra−1/4. Thinking for the moment solely of the meridional circulation in the ampoule,
the upwardly moving fluid enters the layer of thickness Ra−1/6 at the top, Region II,
and then sinks out of that layer into the interior, Region V, closing the circulation by
a return flow into the edge of the Region I boundary layer, or first into the horizontal
shear layer, Region III, and then into I. Because of the insulating condition along
the boundary of Region VI, there is no sidewall boundary layer and hence the flow
in that zone is much weaker. Azimuthal variations in the sidewall heating cause the
inflow from V to I to vary with azimuth angle, and therefore leads to a swirling flow,
superposed on the meridional angularly-averaged eddy. Because of the insulating zone
around the crystal–melt interface, it is well known that this ‘upper eddy’ is isolated
from the interface (Ardonato & Brown 1987). The most intense motion is in Region
IV – the ‘lower eddy’; it is due to heat flux at the interface from the solid, Region
VII. Since the flux does not match the flux from above, the interface deflects, thereby
inducing a buoyancy-driven flow. The result of that interaction at the interface is the
concentration variation noted above.

Figure 3 shows contours of constant radial velocity on two different azimuthal
planes in the melt, for the case of an ampoule subjected to azimuthally varying
sidewall heating, as computed by Foster (1999); parameters listed in the caption are
defined in the next section. One can clearly see the boundaries of the upper eddy,
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Figure 3. Lines of constant dimensionless radial velocity component for Pe ′ = 0.1, Ra = 106,
k = 0.5, M = −1, G = −1, K = 1, Γ = 0, L1 = L2 = 4, zI = z̄I = 1 for sections at (a) θ = 0 and
(b) θ = 60◦. There are 25 equal intervals between values of −7.9× 10−5 and 8.1× 10−5. Heating has
a cos θ variation.

and what is a relatively weak – at this relatively small Rayleigh number – lower eddy
near the interface. At the relatively small Rayleigh number for this figure, the lower
eddy is not as intense as the upper one – something that changes for Ra→∞.

As we shall see in the next section, at sufficiently small Biot number, B, the Navier–
Stokes equations, associated transport equations and boundary conditions constitute
a linear problem. In such a case, it is generally convenient to split the sidewall heating
into an azimuthally averaged segment, and an azimuthally varying component with
zero average. Linearity of course means that the same split may be done for the
velocity vector and thermodynamic quantities. So, for some generic quantity ψ, for
example,

ψ(r, θ, z) = 〈ψ〉(r, z) + ψ̃(r, θ, z), 〈ψ〉 ≡ 1

2π

∫ 2π

0

ψ(r, θ, z) dθ, (1.2)

where (r, θ, z) are the usual circular polar coordinates. It is evident, then, that

〈ψ̃〉 ≡ 0. (1.3)

1.2. Overview of flow changes with Taylor number

The work here builds on that of Foster (1997, 1999), who found, among other things,
that the interfacial deflection, Z , scales as BRa−1/6 in the absence of rotation. It is
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convenient to measure the rotation of the ampoule by a Taylor number,

T ≡ Ωa2

ν
, (1.4)

where Ω is the rotation rate of the ampoule, a is the ampoule radius and ν is the
kinematic viscosity in the melt. The nature of the melt flow and the segregation then
depends strongly on the relative sizes of T and the other dimensionless parameters
of the problem, particularly the Rayleigh number. We summarize below the changes
in the flow and solidification with Taylor number, before proceeding to all of the
mathematical details. Each case is also labelled with the number of the section in the
paper in which that parameter range is explored.

Section 4: T = O(1). There is no deviation from the T ≡ 0 interfacial scalings.
The motion in the melt is slightly altered, however, a harbinger of what is to come:
Coriolis-driven swirl motion arises, and the vertical vorticity component is now non-
zero, for both 〈ψ〉 and ψ̃.

Section 5: 1 � T � Ra1/3. In this range, the interfacial deflection and material
segregation do not alter in scale, though the flow structure does change a bit, reflecting
increased effects of swirl, for example.

Section 6:T = O(Ra1/3). We examine this case for axisymmetry only. The interfacial
boundary layer is more complicated here, with Coriolis effects playing an important
role in the layer for the first time, but the qualitative role of the layer is unchanged.
Hence, 〈Z〉 = O(BRa−1/6) as above. Details of the melt flow are again somewhat
altered, but without an effect on 〈Z〉. There is an indication in the result that at still
larger values of T the segregation will be larger.

Section 7: Ra1/3 � T � Ra1/2. Exploring the azimuthally varying situation only
here, we find that Z̃ is now larger than in the cases for smaller T, namely Z̃ =
O(BT/Ra1/2). The reason is that the interfacial layer, Region IV in figure 2, splits
into a thinner Ekman layer in which speed adjustments occur, and a thicker thermal
layer, whose width is T/Ra1/2.

Section 8: T = O(Ra1/2). At this stage, considering axisymmetric situations only,
rotation appears counter-productive. The interfacial boundary layer is simply an Ek-
man layer. Increased Coriolis force magnitudes have caused the thermal adjustments
to occur in Regions V and VI rather than in Region IV. Thus, at this stage, the
axisymmetric interfacial deflection, 〈Z〉, increases to O(B).

Section 9: T = O(Ra). In this final parameter range, the flow is fully rotation-
dominated. The order of 〈Z〉 remains B as for the above case. The flow structure,
however, is quite different from the previous regime – with radial motion strongly
suppressed and a vertical drift velocity driven by Ekman entrainment requirements in
Regions II and IV. Further increases in rotation would appear to be futile, in terms
of reducing segregation.

Since so many parameter ranges are examined here, two simplifications in presen-
tation have been made to minimize the size of the paper. First, as may be noted in the
above discussion, both axisymmetric and non-axisymmetric cases are not presented
in detail in each parameter range. Secondly, all of the solution details are not given
in every parameter range, but generally only in ranges for which the solutions depart
significantly from those already given by the author (Foster 1997, 1999).

1.3. The rotating flow foundations

Foster (1999) has already pointed out that there are great physical and hence
mathematical complexities of a flow like that described here at locations where
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boundary layers intersect, as for example at the junction of Regions I and III in
figure 2. Fortunately, the boundary-layer structure in these solidifying fluids is nearly
identical with the layers of rapidly-rotating flow theory – except that everything is
turned through 90◦. Though much groundwork for these rotating flows was laid by
Stewartson (1966), it is the paper by Moore & Saffman (1969) that shows how to
deal properly with these layer-intersection problems. For example, as the fluid in the
Region III layer arrives at the outer wall (r = 1), it flows into what is effectively a
point sink on that scale – since the non-uniformities in the sidewall layer are on a
vertical scale Ra−1/4, which is o(1) on the Region III scale. Because all of that has
been worked out for the very similar rapidly-rotating flow problems by Stewartson
and Moore & Saffman, there is no need to examine those issues here. The interested
reader should refer to the works cited for details.

2. Formulation
We consider here a Bridgman-type furnace, through which a circular ampoule of

melt moves at a steady speed V . In the analysis below, the ampoule translates in
the −z∗-direction, in the same direction as the gravitational acceleration. We utilize
a coordinate system in which the propagating solidification front is stationary. (See
figure 1.) Let (r∗, θ, z∗) be the usual cylindrical polar coordinates, and let the thermal
and solutal conditions be imposed at z∗ = aL1, where the temperature is taken to be
TH , and at z∗ = −aL2, where T ∗ = TC , with TH > TC; a is the radius of the ampoule.
(The starred quantities are dimensional.) We choose the coordinate-system origin so
that the nominal crystal–melt interface (that is, with perfect sidewall insulation) is
located at z∗ = 0. We recalled in the previous paper (Foster 1999) the results of Tiller
et al. (1953) that the thermal and solutal distributions variation with z under perfect
insulation conditions are given by

T ∗ = T ∗s +
K∆Tz

L2 +KL1

, z > 0, (2.1)

T ∗ = T ∗s +
∆Tz

L2 +KL1

, z < 0, (2.2)

T ∗s =
KL1TC + L2TH

KL1 + L2

, (2.3)

c∗ = c∞
(

1 +
1− k
k

e−Pe′z
)
, (2.4)

where T ∗s ≡ T ∗M − mc∞/k is the surface temperature; K is the ratio of the thermal
conductivities in the solid and the melt, respectively; c∗ is the concentration of the
(dilute) solute; k is the ‘segregation coefficient’; and Pe ′ is the solutal Péclet number,
Va/D, with D the solutal diffusion coefficient. The coordinates r and z are made
dimensionless with the ampoule radius, a. The linear thermal distribution follows
from an assumption that the thermal Péclet number is very small.

2.1. Equations of motion and parameters

To explore modifications to this one-dimensional distribution due to imperfect sidewall
insulation or other effects coupled with effects of rigid rotation of the furnace, we
follow Foster (1997) in writing the fluid velocity vector as u∗ = −Vk+(gα∆Ta2/ν)Bu,
where ∆T = TH − TC , α is the coefficient of thermal expansion and B is the Biot
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number defined earlier, which is in fact driving the three-dimensional motion. We
also write T ∗ = ∆TT0(z) + B∆TT and c∗ = ∆c∗(C0(z) + Bc/G), where ∆c∗C0(z) is
given by (2.4) and for convenience, we have taken ∆c∗ ≡ c∞/k. Substitution into the
Boussinesq-approximated Navier–Stokes equations gives the following:

∇ · u = 0, (2.5)

Pr−1RaB(u · ∇)u+ 2Tk × u+ ∇p = ∇2u+ k(T + c), (2.6)

∇2T = RawT ′0(z) +BRa(u · ∇)T , (2.7)

∇2c =
GRa

E wC ′0(z)− Pe ′k · ∇c+BRa

E (u · ∇)c, (2.8)

where k = ∇z and velocity vector has components u = (u, v, w) in the radial, azimuthal
(θ) and z directions respectively. Recall that the thermal Péclet number has already
been taken to be very small, so terms involving that parameter have already been
dropped. Three additional parameters, beyond those already noted, arise, namely the
Prandtl number, Pr; a ratio of solutal-to-thermal diffusion, E ≡ D/κ; and the quantity
G ≡ β∆c∗/(α∆T ). In addition to the thermal Rayleigh number Ra already defined,
there is a Rayleigh number related to the density difference due to concentration
variation, Rac, which is most conveniently written as Rac = RaGPe ′/E. Note that
Rac < 0, since G < 0 for the heavy solute considered in this paper. In the solid,
where we are ignoring vertical variation in solute concentration, c, the dimensionless
temperature satisfies a zero-Péclet-number heat conduction equation,

∇2T̄ = 0. (2.9)

As in the previous analyses, ignoring thermal Péclet number, required for the validity
of (2.1), (2.2) and (2.9), implies that

EPe ′ = O(1). (2.10)

However, we take the solutal Péclet number, Pe ′, and the Prandtl number, Pr , to be
O(1). Throughout this paper, we explore the ‘thermally dominant’ situation for which

Ra� |Rac| =⇒ GPe ′

E � 1. (2.11)

The rotation of the ampoule, undertaken to improve the quality of the crystal,
introduces the Taylor number, T, whose order relative to Ra determines the nature
of the flow in the melt and the segregation in the solid. Note that in equation (2.6)
the centrifugal term has been neglected. That amounts to ignoring the tilting of the
iso-pycnyl surfaces due to the rotation of the ampoule. (To be consistent with the
Boussinesq approximation, the centrifugal force cannot in this situation be absorbed
into the pressure, since the density multiplier makes the force non-conservative.) In
dimensionless terms, that leads to a restriction on the Taylor number,

(α∆TPr)1/2T� Ra1/2. (2.12)

This particular requirement is not very severe, since the Prandtl number is typically
quite small for materials of interest. More precise orderings of T relative to Ra will
be discussed below. Overturning of the fluid is avoided by requiring that T ′0(z) +
(G/E)C ′0(z) > 0 for all z.
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2.2. Boundary conditions

The boundary conditions to be imposed at the (as yet) unknown crystal–melt interface
(at z = Z(r, θ)) may be found in Brattkus & Davis (1988), or Tanveer (1994), and are

u = 0, (2.13)

T0 +BT = T̄0 +BT̄ = TM +M

(
C0 +

B
G
c

)
+BΓ ∇2

hZ

(1 + |∇Z |2)3/2
, (2.14)

∂(T0 +BT )

∂n
=K∂(T̄0 +BT̄ )

∂n
, (2.15)

∂(GC0 +Bc)
∂n

= (k − 1)(GC0 +B c)Pe ′, (2.16)

at z = Z(r, θ), where n is a direction normal to the interface and ∇2
h is an horizontal

Laplacian. The morphological number is M ≡ −m∆c∗/∆T ; the dimensionless melting
temperature TM is equal to T ∗M/∆T , and Γ is a non-dimensional measure of the
surface tension, with a factor B removed.

Boundary conditions are taken to be steady on the endwalls of the ampoule, so

T = 0, c = 0, u = 0 at z = L1, (2.17)

T = 0 at z = −L2. (2.18)

The validity of such end conditions in leading to a quasi-steady flow is discussed by
Jalics (1998).

2.2.1. Sidewall boundary conditions

After substitution of the temperature expansion into Newton’s law of cooling at
the sidewall, the thermal boundary condition becomes

∂T

∂r
= −Θ(θ)(T0(z)− Ta) on r = 1 for z > zI ,

∂T̄

∂r
= −K−1Θ(θ)(T̄0(z)− T̄a) on r = 1 for z < −z̄I ,

 (2.19)

∂T

∂r
= 0 on r = 1 for − z̄I < z < zI , (2.20)

The quantities Ta, T̄a ≡ T ∗a /∆T , T̄ ∗a /∆T are dimensionless measures of the ambient
temperatures in the air outside the ampoule, in the hot and cool zones respectively.
The quantities Θ(θ) and Θ allow for the possibility of azimuthal variations in the
heat transfer into the ampoule. The h in the Biot number definition in (1.1) is chosen
so that 〈Θ〉 = 〈Θ〉 ≡ 1. For convenience in what follows, we denote the entire
right-hand side of (2.19)–(2.20) by f(z, θ), noting that in this situation, f is always
piecewise linear in z.

Before proceeding, we note that boundary conditions (2.19), (2.20) are written down
assuming that the thermal conditions are imposed directly at the fluid or crystalline
boundary. Of course, that is not the case; there is an ampoule wall through which
the heat is conducted. Elementary one-dimensional analysis shows that, provided the
ampoule wall is thin, these conditions are correct; all that one must do is replace the
Biot number, B, by a modified Biot number, namely,

B
1 +Ba

≡ B′ −→ B, (2.21)
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where Ba is a Biot number associated with the ampoule wall, Ba ≡ hd/ka, if ka is the
thermal conductivity of the wall, which has thickness d. So long as this modified Biot
number, B′, is small, all of the analysis goes through unchanged with B′ replacing
B. (It is interesting to note that B′ might be small even if B is not – should Ba be
large.) The extension to this situation with a wall of finite thickness requires, too,
that the discontinuity in f (f̄) at z = zI (z = z̄I) is preserved across the wall material.
That will be the case if any ‘spreading’ of the discontinuity is small compared to the
thickness of the Region III layer as it hits the wall, that is

d

a
� zIRa

−1/6. (2.22)

Hence, in summary, satisfaction of this condition and the replacement (2.21) together
account for the presence of an ampoule wall.

In much of what follows, it is convenient to represent the sidewall heating as a
Fourier series, hence we write

f(z, θ) = Re

[ ∞∑
m=0

am(z)eimθ

]
, (2.23)

with a similar series in the solid for f̄.
No slip of fluid velocity and no transport of solute at the sidewalls means that

u = 0 on r = 1, all z. (2.24)

and
∂c

∂r
= 0 on r = 1, all z. (2.25)

There are also obvious symmetry conditions on the centreline of the ampoule, at
r = 0.

2.3. The sidewall boundary layer

As in Foster (1997, 1999), the motion in the melt is driven by heat transfer through
the non-insulated portions of the sidewalls, reflected mathematically in the Newton’s
law of cooling boundary condition (2.20): the heat transfer induces a buoyant motion
in a wall boundary layer of width Ra−1/4, and so long as B is sufficiently small and

Ra−1/4Pe ′ � 1,

a linear structure is appropriate to the layer, and so the velocity, thermal and
solute distributions may be written down exactly. That results in simple formulae for
boundary-layer entrainment as well as thermal (or solutal) edge conditions. These
conditions essentially provide compatibility conditions at the ‘wall’ of the interior
solutions. Here, for sufficiently large Taylor number, T, the boundary-layer structure
changes and hence the overall flow will be significantly modified.

Doing the usual boundary-layer approximations on equations (2.6)–(2.8), we have

pr = 2Tv, pθ + 2Tu = vrr , pz = wrr + T + c, (2.26)

Trr = RaT ′0w, crr =
GRa

E C ′0(z)w. (2.27)

These equations may be combined, with continuity, into two equations for w and v,



194 M. R. Foster

namely

wrrrr + Ra

(
T ′0 +

G

EC
′
0(z)

)
w = 2Tvrz , (2.28)

vrrr = −2Twz. (2.29)

These equations may be combined into a single equation,

wrrrrrr + Ra

(
T ′0 +

G

EC
′
0(z)

)
wrr + 4T2wzz = 0. (2.30)

There are clearly a number of differing limiting cases, depending on the relative
orders of Ra and T. If we use the scaling of Foster (1997, 1999) for the non-rotating
cases, then we write r − 1 = Ra−1/4ξ, and we recover the non-rotating equation,

wξξξξ +

(
T ′0 +

G

EC
′
0(z)

)
w = 0 for T� Ra3/4. (2.31)

In this case, the swirl velocity is decoupled, and found by subsequently integrating

vξξξ = −2
T

Ra3/4
wz, (2.32)

from which it is immediately evident from the restriction in (2.31) that v is an order
of magnitude smaller than the vertical velocity component, w. What emerges, in
the ‘thermally dominant’ regime considered in this paper are the formulae for edge
conditions,

cr = −GC
′
0(z)

ET ′0(z)f(z, θ), (2.33)

and

u =
∂

∂z

(
f(z, θ)

RaT ′0(z)

)
at r = 1 for (−G)Pe ′/E � 1. (2.34)

These expressions are identical to what was found before by Foster (1999), but now
the swirl velocity, which was zero in the no-rotation case is given by

v =
2T

(RaT ′0)3/2

∂f

∂z

[√
2eβξ cos

(
βξ − π

4

)
− 1

]
, (2.35)

where β ≡ (T ′0)1/4/
√

2.

Once the Taylor number is as large as O(Ra3/4), the layer structure is governed,
from (2.31), by the higher-order equation

wξξξξξξ +

(
T ′0 +

G

EC
′
0(z)

)
wξξ + 4

T2

Ra3/2
wzz = 0 for T = O(Ra3/4). (2.36)

The solutions to this equation are clearly non-local – unlike the previous case – and
so the equation must be solved simultaneously with the outer problem.

If the Taylor number exceeds Ra3/4, then the layer thickness is T−1/3, the equation
being that of the ‘Stewartson 1/3-layer’ of rapidly-rotating flow theory (Stewartson
1966). Again, the solutions are non-local.

Although the buoyancy layer persists for T up to O(Ra3/4), an additional layer
arises exterior to the buoyancy layer for values ofT� Ra1/2; its width is O(Ra1/2/T).
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If we write r − 1 = (Ra1/2/T)r̂, then the equation in this new layer is(
T ′0 +

G

EC
′
0(0)

)
wr̂r̂ + 4wzz = 0 for Ra1/2 �T� Ra3/4. (2.37)

Clearly the layer merges into the complicated, combined layer at T = O(Ra3/4),
described by (2.36), and at the other extreme, for T = O(Ra1/2), the layer thickness
goes to infinity, indicating a new interior structure is present at this order of T.

3. The interfacial boundary layer
Before proceeding to the outer expansion, it is important to look closely at the

structure of the boundary layer on the crystal–melt interface. Applying the usual
boundary-layer approximations to equations (2.5)–(2.8), for a layer near z = 0, we
have

−2Tv + pr = uzz , 2Tu+
pθ

r
= vzz , (3.1)

pz = T + c, Tzz = RaT ′0w, czz =
GRa

E C ′0(0)w, (3.2a–c)

where we have not explicitly written down the nonlinear terms, taking B to be
sufficiently small to make their neglect appropriate. The first two of these equations,
utilizing continuity, can be better written in terms of the vertical velocity, the pressure
and the vertical vorticity component, as

∇2
hp− 2Tζ = −wzzz , −2Tw = ζz, rζ ≡ (rv)r − uθ. (3.3)

Eliminating ζ, w, T and c leads to a single equation for the pressure in this boundary-
layer region as

pzzzzzz + 4T2pzz + Ra

(
T ′0 +

G

EC
′
0(0)

)
∇2
hp = 0. (3.4)

The non-rotating scaling is quickly recovered from this result: the boundary-layer
width is O(Ra−1/6). Clearly, that scaling is valid only for T� Ra1/3; this restriction
is much more severe than that coming from the sidewall layer. Therefore, as Ω
increases, rotation effects are felt first in this layer, long before any evidence of
rotation appears in the sidewall layer. If we take the Taylor number to be of order
Ra1/3, then all terms in (3.4) are of equal magnitude. The outflow at the edge of the
layer remains O(Ra−1/6), as compared with the horizontal components.

Also instructive is the magnitude of the vertical vorticity in the layer. We now scale
the vertical velocity as w = Ra−1/6ẃ, and the vertical coordinate as z = Ra−1/6ź.
Then, from (3.3),

ζedge = − 2T
Ra1/3

∫ ∞
0

ẃ dź. (3.5)

Therefore, once T is as large as O(Ra1/3), the vorticity in the outer flow at the edge
of the layer is the same order as the velocity components, and hence the outer flow
is not irrotational as it is in the T ≡ 0 case.

For T� Ra1/3, the layer described by (3.4) becomes double-structured, for values
ofT up to O(Ra1/2). The inner layer is a standard Ekman layer, of widthT−1/2, and
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the (thicker) outer layer is described by writing z = (T/Ra1/2)ẑ, and its equation is

4pẑẑ +

(
T ′0 +

G

EC
′
0(0)

)
∇2
hp = 0, for Ra1/3 �T� Ra1/2. (3.6)

For T = O(Ra1/2) and larger, this layer merges into the interior, and there is an
Ekman layer only.

Since in this paper we consider only the ‘thermally dominant’ scenario, which
implies that Ra � |Rac|, the coefficient of ∇2

hp in (3.4) and (3.6) becomes T ′0 only –
the C ′0(0) term is much smaller and negligible to leading order.

3.1. Other horizontal layers

In addition to the boundary layer on the interface, there are other horizontal layers
in the melt. In every case, a layer or layers exist on the upper boundary at z = L1.
In ways described quantitatively in § 2 and more completely in Foster (1999), that
layer is required to complete the circulation pattern in the ‘upper eddy’ of the melt.
In addition, in some of the parameter ranges explored in this paper, as in the case for
T ≡ 0 already outlined, there is the need for an adjustment layer, Region III of figure
2. Since neither of these layers has a direct bearing on the crystalline segregation, no
details of either layer are given in this paper by reason of brevity.

4. The interior solutions for T = O(1)

Before proceeding to cases for which the rotation makes a difference in the structure
of the singular layers, we examine the situation for which rotation first makes a
difference in the melt flow: in the interior of the melt, only. Because the inflow into
the sidewall boundary layer is O(Ra−1/6), it appears that the asymptotic series in the
interior of the fluid should be, as for the non-rotating case,

u = Ra−1U (0) + · · · , T = T (0) + δT (1) + · · · , c = c(0) + δc(1) + · · · , (4.1)

T̄ = T̄ (0) + δT̄ (1) + · · · , (4.2)

where δ is the horizontal layer thickness, Ra−1/6.
First, in the solid, the first-order problem is

∇2T̄ (0) = 0, T̄ (0) = 0 at z = −L2, T̄ (0)
r = f̄ at r = 1. (4.3)

To this boundary-value problem must be added the joining conditions at z = Z ,
which come out of (2.14) and (2.15). Problem (4.3) clearly is unchanged throughout
the parameter regimes of this problem.

Now, as to the flow in the melt, the first-order equations are

∇p(0) = (T (0) + c(0))k, T ′0W
(0) = ∇2T (0), ∇2c(0) + Pe ′c(0)

z = 0. (4.4a–c)

In the non-rotating analysis, it was convenient to split the solution into an azimuthally
averaged and an azimuthally varying segment; that can be done here as well, but
we defer that until later. The solutions to (4.4) are highly non-unique. To obtain the
equations that resolve that non-uniqueness, we must proceed to higher order. At sixth
order, the equations become

2Tk ×U (0) + ∇p(6) = (T (6) + c(6))k + ∇2U (0), (4.5)

T ′0W
(6) = ∇2T (6), ∇2c(6) + Pe ′c(6)

z = 0, (4.6)
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provided that GPe ′/E is sufficiently small. The vertical component of the curl of (4.5)
is

−2T∂W (0)

∂z
= ∇2ζ(0), ζ(0) =

1

r

∂(rV (0))

∂r
− 1

r

∂U(0)

∂θ
. (4.7)

4.1. Azimuthally averaged component

Splitting the solution into azimuthally averaged and azimuthally varying components,
then averaging equations (4.4)–(4.7), it turns out as before (Foster 1999) that 〈c(0)〉 ≡ 0.
Then, (4.4a) indicates that 〈T (0)〉 is solely a function of z, and so (4.4b) shows that
〈W (0)〉, too, depends only on z, in which case the averaged continuity equation may
be simply integrated to give

〈U(0)〉 =
r

2

d〈W (0)〉
dz

. (4.8)

Boundary condition (2.34) then permits the evaluation of 〈W (0)〉, so

〈W (0)〉 = −2〈f〉
T ′0

, 〈U(0)〉 = r
〈f′〉
T ′0

. (4.9)

Substitution of this result into averaged (4.7) gives the equation for the averaged
vorticity,

∇2〈ζ(0)〉 =
4T
T ′0
〈f1〉r. (4.10)

We have seen in §§ 2.3, 3 that for T = O(1), ζ(0) = 0 at the edge of both horizontal
and vertical boundary layers. If we let {βn} be the set of zeros of the Bessel function
J0(x), then the solution of (4.10) may be written as a Fourier–Bessel series

〈ζ(0)〉 =

∞∑
n=1

An(z)J0(βnr), (4.11)

and

An(z) = −4T〈f1〉rn
T ′0

[
1− sinh (βnz)

sinh (βnL1)
− sinh (βn(L1 − z))

sinh (βnL1)

]
, (4.12)

where rn is a Fourier coefficient for r. Then, one more integral gives the variation of
the averaged swirl in the interior,

〈V (0)〉 =

∞∑
n=1

An(z)

β2
nr

∫ βnr

0

ξJ0(ξ) dξ. (4.13)

So, perhaps not surprisingly, the Coriolis accelerations lead to a swirl velocity in
the interior even with axisymmetric heating. The remainder of the solution for this
axisymmetric segment of the problem proceeds exactly as in Foster (1997). Briefly,
that is as follows. Both the temperature, 〈T (0)(z)〉, a solution of the equation (4.4b),
and the solution of (4.3) in the solid vanish at z = 0. In that case, there is net
heat flux into the interface, resulting in motion in the interfacial layer, with a speed
of magnitude Ra−2/3. The motion, and corresponding interfacial deflection, lead to
solutal variations of O(BRa−1/6).

However, though there are changes in the details of the interior melt flow, because
of the presence of swirl at the interfacial layer’s edge, there is no change in the
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qualitative character of the solution as compared with that for no ampoule rotation
because the eddy above the interface is essentially unchanged.

4.1.1. The thermal solution

Even though the solution for this problem is essentially already written out in
Foster (1997), it is important to summarize the results here for subsequent reference.
First, it turns out that 〈c(0)〉 ≡ 0. Then, the solution to the equation in the solid, given
by (4.3), is straightforward, and – using the notation in Foster (1999) – results in

〈T̄ (0)
rz 〉z=0 =

∞∑
n=1

Q′′′n (0)J1(α0nr), (4.14)

Q′′′n (0) =
2(−1)n[T̄0(−L2)− T̄a]

K sinh (α0nL2) +
2(−1)n

K sinh (α0nL2)

×
[

sinh [α0n(L2 − z̄I)]
α0n

T̄ ′0 − [T̄0(−z̄I)− T̄a] cosh [α0n(L2 − z̄I)]
]
. (4.15)

The quantities {α0n} are the zeros of J ′0. Integration of (3.2b) across the boundary
layer connects result (4.14), (4.15) to the boundary-layer flow, so that

−K〈T̄ (0)
rz 〉z=0 = Ra5/6T ′0

∫ ∞
0

〈w〉 dź, (4.16)

where, as in § 3, ź = Ra1/6z. The scale of 〈w〉 is clearly Ra−5/6, making 〈u〉 of order

Ra−2/3. Letting 〈u〉 = Ra−2/3ú, the other interfacial boundary conditions in § 2.2, when
combined, eventually give

〈c(1)
rz 〉 =

(k − 1)T ′0 + (M + kG)C ′0(0)

T ′0 −MC ′0(0)
Pe ′〈c(1)〉 − Pe ′kGC ′0(0)

T ′0 −MC ′0(0)
úźźź , (4.17)

to be applied at z = ź = 0. The structure of the boundary layer allows úźźź to be
related to the thermal gradient from (4.16). That relationship is

úźźź|ź=0 = 2K
∞∑
n=1

Q′′′n (0)

pn
J1(α0nr), (4.18)

and pn ≡ (α2
0nT

′
0)

1/6. The concentration perturbation 〈c(1)〉 obeys the same equation as
c(0) in (4.4), and the solution is given by

〈c(1)
r 〉 =

∞∑
n=1

Rn(z)J1(α0nr), (4.19)

where

Rn(0) = − 2Pe ′kGC ′0(0)K
T ′0 −MC ′0(0) + Γα2

0n

Q′′′n (0)

3pn

tanh (GnL1)

sn tanh (GnL1) + Gn , (4.20)

sn ≡
[

1

2
+

(k − 1)T ′0 + (M + kG)C ′0(0)− Γα2
0n

T ′0 −MC ′0(0) + Γα2
0n

]
Pe ′,

Gn ≡
√

Pe ′2

4
+ α2

0n.

 (4.21)
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4.2. Azimuthally varying component

Now, according to (4.4a), T̃ (0) = −c̃(0), so that from (4.4c),

∇2T̃ (0) + Pe ′T̃ (0)
z = 0, T̃ (0)

r = 0 at r = 1, T̃ (0) = 0 at z = L1. (4.22)

This equation must be solved subject to the appropriate conditions at the interface,
where the solution is joined with the solution to (4.3) in z < 0. Supposing for the
moment that has been done, the vertical velocity distribution throughout the melt is
given from (4.4b) by

W̃
(0)

=
1

T ′0
∇2T̃ (0). (4.23)

Then, using continuity and (4.7), we obtain a pair of simultaneous equations for Ũ
(0)

and Ṽ (0), namely

1

r

∂(rŨ
(0)

)

∂r
+

1

r

∂Ṽ (0)

∂θ
= −∂W̃

(0)

∂z
, (4.24)

∇2ζ̃(0) = −2T∂W̃
(0)

∂z
. (4.25)

Since the properties of all of the boundary layers require that ζ̃(0) vanishes at their
edges, this equation may be solved, most simply in the form

ζ̃(0) = −2T
T ′0

∂T̃ (0)

∂z
+ Φ, ∇2Φ = 0, ζ̃(0) = 0 on all boundaries. (4.26)

Equation (4.24) may then be put into a form for M̃
(0) ≡ rŨ(0)

, namely

∇2
hM̃

(0)
= −∂ζ̃

(0)

∂θ
− ∂

∂z

1

r

∂(rW̃
(0)

)

∂r
, (4.27)

to be solved under boundary conditions

M̃
(0)

= f at r = 1; M̃
(0)

= 0 at z = 0, L1. (4.28)

It looks as though the solution has changed significantly from the T ≡ 0 case, but in
fact it has not. Carefully examining the interfacial layer indicates that T̃ (0)

z must be
zero at z = 0, and hence the unique solution is T̃ (0) ≡ 0. Then, (4.23) indicates that

W̃
(0) ≡ 0, so the flow is in horizontal planes in and out of the sidewall layers. From

(4.26), ζ̃(0) ≡ 0 too, making that planar flow irrotational as in Foster (1999). Then,
the solution of (4.27), (4.28) subject to (2.34) is

Ũ
(0) − iṼ (0) =

1

T ′0

∞∑
m=1

a′mr
m−1eimθ. (4.29)

Hence, the first non-zero thermal and solutal perturbations are O(Ra−1/6), as for
T ≡ 0, and so there is no change in the segregation in the crystal at this order. So,
the added swirl is not coupled to the thermal fields. The details of the analysis leading
to the solutal variation at the interface are not that different from the axisymmetric
case given in § 4.1.1 (Foster 1999). The single summations in (4.14), (4.20) and (4.19)
become double sums, including a summation over Fourier series components in the
θ-direction.

The magnitudes of the velocity vectors in the various regions of the melt are shown
in the first two entries of table 1.
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T range, Region IV Region V Region VI
axisymmetric? Section (u, v, w) (u, v, w) (u, v, w) Z

T = O(1), Y 4.1 (ε2/3, ε, ε5/6) (ε, ε, ε) (ε7/6, ε, ε7/6) Bε1/6

T = O(1), N 4.2 (ε2/3, ε, ε5/6) (ε, ε, ε7/6) (ε7/6, ε7/6, ε7/6) Bε1/6

1�T� ε−1/3, Y 5.1 (ε2/3,Tε, ε5/6) (ε, εT, ε) (ε7/6,Tε, ε7/6) Bε1/6

1�T� ε−1/6, N 5.2.1 (ε2/3,Tε, ε5/6) (ε, ε, ε7/6)
( ε
T ,

ε

T , ε7/6
)

Bε1/6

ε−1/6 �T 5.2.2 (ε2/3,Tε, ε5/6) (Tε7/6,Tε7/6, (Tε7/6,Tε7/6, Bε1/6

� ε−1/3, N ε7/6) ε7/6)

T = O(ε−1/3), Y 6 (ε2/3, ε2/3, ε5/6) (ε, ε2/3, ε) (ε, ε2/3, ε) Bε1/6

ε−1/3 �T 7 (ε, ε, ε

T1/2 ) (ε, ε,Tε3/2) (ε, ε,Tε3/2) BTε1/2

� ε−1/2, N

T = O(ε−1/2), Y 8 (ε3/4, ε3/4, ε) (ε, 1
T , ε) (ε,T−1, ε) B

T = O(ε−1), Y 9

(
2

T ,
1

T ,
1

T3/2

) (
1

T3/2
,

1

T ,
1

T3/2

) (
1

T3/2
,

1

T ,
1

T3/2

)
B

Table 1. Velocity magnitudes in Regions IV–VI of figure 2 in the various Taylor number regimes
of the paper. Here, ε = Ra−1.

5. Solutions for 1�T� Ra1/3

Surprisingly, perhaps, once the Taylor number gets large, the structure of the flow
field is very strongly dependent on whether or not there is azimuthal dependence of
the sidewall heating. We first consider the case for which there is axisymmetry, then
turn to the azimuthally varying case in the subsequent section.

The immediate reason for the restriction given in the title of this section is that, as
noted in § 3, so long as the Taylor number is smaller than order Ra1/3, there is no
change in the structure of the interfacial boundary layer. We now turn first to the
interior structure, which is modified by the largeness of T.

5.1. The interior structure for the axisymmetric case

The sidewall inflow demands that u be O(Ra−1), and since there can be no θ variation
in the averaged swirl, continuity requires that 〈w〉 be the same order. The azimuthal
component of (2.6) then forces the swirl velocity be larger than u by O(T). Thus, we
write v = Tv̂. Using û to denote the velocity vector with only the swirl rescaled, the
outer expansion apparently takes the form

〈û〉 =
1

Ra
〈Û (0)〉+

1

Ra7/6
〈Û (1)〉+ · · · , (5.1)

〈T 〉 = 〈T (0)〉+
1

Ra1/6
〈T (1)〉+

T2

Ra7/6
〈T (2)〉+ · · · , (5.2)

and similarly for c, except that the O(1) term is absent. The second term in each series
as usual is required for matching of the crystal–melt boundary layer temperature
perturbations. Coriolis force then generates the third term in each series. Substitution
into the equations of motion gives

∇〈p(0)〉 = 〈T (0)〉k, T ′0〈Ŵ (0)〉 = ∇2〈T (0)〉. (5.3a,b)

Clearly, 〈Ŵ (0)〉 and hence 〈T (0)〉 are functions of z alone. Thus, continuity can be
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solved trivially to give

〈Ŵ (0)〉 = −2
〈f(z)〉
T ′0

, 〈Û(0)〉 = r
〈f′〉
T ′0

. (5.4)

Then, from (5.3b),

d2〈T (0)〉
dz2

= −2〈f〉, (5.5)

and the azimuthal momentum equation becomes

D2〈V̂ (0)〉 = 2r
〈f′〉
T ′0

, D2 ≡ ∇2 − 1

r2
. (5.6)

Terms of subsequent orders can be determined from equations further down the hier-
archy without difficulty, in spite of the complication that the terms with superscripts
2 and 3 interchange orders if T� Ra1/4.

Equation (5.6) for 〈V̂ (0)〉 may be easily solved, utilizing 〈f〉 from the thermal
boundary condition. The solution is

〈V̂ (0)〉 =
r3 − r

4
H(z − zI ) +

∞∑
n=1

An(z)J1(α0nr), (5.7)

An = −Cn sinh (α0n(L1 − z)) cosh (α0nzI ), z > zI , (5.8)

An = Cn cosh (α0n(L1 − zI )) sinh (α0nz), z < zI , (5.9)

and the coefficient is given by

Cn =
1

α0n[J0(α0n)]2 sinh (α0nL1)

∫ 1

0

(2r3 − 2r)J0(α0nr) dr. (5.10)

As in the case of the axisymmetric problem analysed in a previous paper (Foster
1997) and reiterated briefly in § 4, the solution of the 〈T (0)〉 problem, with 〈T (0)〉 a
function of z only, can be found without surface deflection. So, problem (5.3b) is to
be solved subject to 〈T (0)〉 = 0 at z = 0, and the solution for 〈T̄ (0)〉 has properties
already given in (4.14), (4.15). That leaves a flux mis-match at z = 0, leading again
to O(Ra−2/3) radial velocity in the interfacial layer, and solutal variation at the
interface of O(BRa−1/6). All of the thermal and solutal fields, and the interfacial
layer are exactly as reiterated in § 4.1.1 for T = O(1). Thus, once again, the added
Coriolis-induced swirl does not couple to the temperature distribution in the material.

Table 1 exhibits velocity magnitudes in Regions IV–VI for this range of T.

5.2. The interior structure for the non-axisymmetric case

The outer expansions exhibited at the beginning of § 4 must now be modified in a way
that is different from the modification above for the axisymmetric case. Indeed, we
find differences depending on the magnitude of T relative to Ra−1/6, so we consider
two cases separately below. As will be shown, the differences are in the interior
flow structure, but the separation at the interfacial boundary is unchanged from the
T = O(1) regime.

5.2.1. 1�T� Ra1/6

The inflow demands of the sidewall layer are unchanged, so the first term in the
velocity expansion remains O(Ra−1), but the next terms in the series are changed, so
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we write for the azimuthally varying component,

ũ =
1

Ra
Ũ (0) +

1

TRa
Ũ (1) +

1

Ra7/6
Ũ

(2)
+ · · · , (5.11)

(T̃ , c̃) =
1

T (T̃ (0), c̃(0)) +
1

Ra1/6
(T̃ (1), c̃(1)) + · · · . (5.12)

Substitution into the Navier–Stokes equations, (2.6), for sufficiently small B, with

some manipulation gives W̃
(0) ≡ 0 and the following equations valid for j = 0, 1:

T̃ (j) + c̃(j) = 0, (5.13)

T ′0W̃
(j+1)

= ∇2T̃ (j), (5.14)

−2
∂W̃

(j+1)

∂z
= ∇2ζ̃(j), (5.15)

where ζ is, as before, the vertical component of vorticity. The concentration pertur-
bation, c̃(j), satisfies the equation

∇2c̃(j) + Pe ′c̃(j)
z = 0, j = 0, 1. (5.16)

The boundary layer at the crystal–melt interface discussed in § 3 cannot handle the
large heat flux from the T̃ (0) field, hence T̃ (0)

z = 0 at z = 0, which implies then that

W̃
(1)

= T̃ (0) = c̃(0) ≡ 0. (5.17)

Now, this result implies that ζ̃(0) ≡ 0, so the irrotational horizontal flow given in
(4.29) is still valid.

Since T̃ (1) also satisfies (5.16), the structure and solution of the interfacial layer is
unchanged from T ≡ 0. In contrast with (4.29), the new term in the velocity series,
(RaT)−1, is again in horizontal layers, but rotational, since the vorticity is a solution
of the equation

∇2ζ̃(1) =
2Pe ′

T ′0
T̃ (1)
zz . (5.18)

Note that this motion is spread throughout Regions V and VI of figure 2, so
azimuthally varying flow is induced nearer the interface than in the previous parameter
range. This ‘smearing-out’ of the swirling flow, Ũ (1), is in contrast to the Ũ (0) flow,
which is discontinuous at z = zI and must be smoothed with a transitional layer.
So, though there is an indication that the upper-eddy dynamics will influence what
happens near the interface at perhaps larger T values, it has not happened yet:
the balances in the interfacial layer are unchanged, and hence the radial segregation
remains O(BRa−1/6).

5.2.2. Ra1/6 �T� Ra1/3

At this level for T, the Coriolis forces generate still larger swirling flows, hence the
outer expansion takes the modified form

ũ =
T

Ra7/6
Ũ (0) +

1

Ra
Ũ (1) +

1

Ra7/6
Ũ (2) + · · · , (5.19)

(T̃ , c̃) =
1

Ra1/6
(T̃ (0), c̃(0)) +

1

T (T̃ (1), c̃(1)) + · · · . (5.20)
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As before, we find immediately that

W̃
(0)

= W̃
(1)

= 0. (5.21)

Leaving out some details, which are very like those above in § 5.2.1, the important
equation pair is

−2
∂W̃

(2)

∂z
= ∇2ζ̃(0), (5.22)

T ′0W̃
(2)

= ∇2T̃ (0). (5.23)

Now, T̃ (0) obeys equation (4.22), and the entire analysis of the thermal field is as
described in that section, that is, T̃ (0) is wholly determined by T̄ (0) and the crystal–
melt boundary layer. Therefore, W̃ (2) may then be written down from (5.23), and
then the vorticity, ζ̃(0), determined by (5.22). There has been a significant change
here, in that the horizontal motion is now rotational, and spread throughout the melt
– so that the isolation of the ‘upper’ and ‘lower eddies’ so familiar to workers on
Bridgman solidification has begun to end. The horizontal velocity components in the
interfacial layer are O(Ra−2/3). The new larger outer horizontal velocity components,
O(Ra−7/6T), while larger than the inflow-driven Ra−1, are nonetheless still too small
to affect the fundamental balances in the interfacial layer, in which mis-matched
thermal flux generates non-zero T̃ (0) in Regions V and VI. We can anticipate that
once these induced flows become sufficiently strong, there is an opportunity for the
basic balances in the layer to be altered, and hence segregation to be altered.

Again, velocity magnitudes in Regions IV–VI of figure 2 are summarized in table 1.

6. Axisymmetric solution for T = O(Ra1/3)

In this section, we write T = τ/η, η ≡ Ra−1/3, and proceed in a fashion like that
above. The non-axisymmetric problem in this parameter range is not pursued here,
so without ambiguity we suspend the use of the 〈 〉 notation in this section.

6.1. Outer expansion

The outer expansion proceeds as follows:

(u, w) = η3(U(0),W (0)) + η7/2(U(b),W (b)) + η4(U(1),W (1)) + η5(U(2),W (2)) + · · · , (6.1)

v = τη2V (0) + η5/2V (b) + τη3V (1) + τη4V (2) + · · · , (6.2)

(T , c) = (T (0), 0) + η1/2(T (b), c(b)) + η(T (1), c(1)) + η2(T (2), c(2)) + · · · . (6.3)

The terms with superscript (b) have been added to account for effects due to the
interfacial layer. Substitution into the equations of motion gives, for the second and
third terms in the temperature series, identical equations, hence

∇P (s) = (T (s) + c(s))k, T ′0W
(s) = ∇2T (s), s = 0, b, (6.4)

and, for n = 1, 2,

−2τ2V (n−1) + P (n)
r = 0, P (n)

z = T (n) + c(n), 2U(n−1) = D2V (n−1). (6.5)

The next terms then lead to

−2τ2V (2)
z = D2(U(0)

z −W (0)
r )− T (3)

r − c(3)
r , (6.6)

2U(2) = D2V (2). (6.7)
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The T (0) solution is identical to that found previously by Foster (1997) and the
same as that for the T � η−1 case discussed in § 5.1, and the leading-order velocity
components are given here too by (5.4) and, apparently, also (5.7). The leading-order
swirl is then the solution of the equation

D2V (0) = 2r
〈f′〉
T ′0

. (6.8)

The sidewall layer structure is such that V (0) = 0 there, but the boundary conditions
at z = 0, L1 are yet to be determined.

6.2. Interfacial boundary layer

The boundary layer analysed in § 3 is described by solutions to (3.4), which may be
constructed in the usual fashion, writing u in a form that guarantees that it vanishes
on the sidewall. Hence, for this axisymmetric case,

u =F
∞∑
n=1

Rn(ź)J1(α0nr), (6.9)

where the boundary-layer coordinate, ź ≡ z/η1/2 has been introduced. The quantity
F is an as yet unknown gauge function. Then, Rn satisfies the ordinary differential
equation

R(vi)
n + 4τ2R′′n − T ′0α2

0nRn = 0. (6.10)

The solution takes the form

Rn = cne
−λnź + dne

−µnź + d∗ne
−µ∗nź , (6.11)

where the asterisk denotes complex conjugate. It is easily shown that the solutions to
(6.10) consist of one decaying real exponential, and two decaying oscillatory exponen-
tials, hence the form of (6.11). As in Foster (1997), the temperature perturbation in
this layer is O(η1/2), so the equations of § 3 indicate that w is O(η5/2), hence u = O(η2)
(F = η2), an order smaller than the first term in the outer expansion, so indeed u→ 0
at the layer’s edge, as already implemented in (6.11). Thus, we write formally

T = T (0)(r, 0) + η1/2T́ , c = η1/2ć, w = η5/2ẃ, (u, v) = η2(ú, v́). (6.12)

The velocity boundary conditions at the wall are no slip, as usual. At the edge, we
require that the vertical velocity component vanish, hence there are two conditions
on Rn:

Rn(0) = 0,

∫ ∞
0

Rn(ź) dź = 0. (6.13)

The third condition is the one that couples this interfacial layer to the flow away from
the layer, and particularly to the sidewalls, and is obtained as before by integrating
the thermal equation across the layer and using the joining condition on the thermal
gradient,

T (0)
z |z=0+ −KT̄ (0)

z |z=0− = T ′0
∞∑
n=1

J0(α0nr)

∫ ∞
0

źRn(ź) dź. (6.14)

The quantities on the left-hand side of this equation are known, so Rn is now
completely determined, and the solution may be used in the application of the other
boundary conditions at the crystal–melt interface.
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Interestingly, integration of the swirl equation indicates the presence of a non-zero
swirl at the layer’s edge,

v́edge = −2τη2

∫ ∞
0

źú dź,

=⇒ V (0)|z=0 = −2

∞∑
n=1

J1(α0nr)

∫ ∞
0

źRn(ź) dź. (6.15)

There is a similar expression for V (0) at z = L1, not written down here for brevity.
Before proceeding to the completion of this axisymmetric solution, we need more

details of the boundary-layer solution. The root λn in (6.11) is the positive, real
solution of

λ6
n + 4τ2λ2

n − α2
0nT

′
0 = 0. (6.16)

The root µn can be written as µ = |µn| exp (iψn), and it is easily shown that |µn| = X
1/4
n ,

where Xn is the positive real root of

X3
n − 4τ2X2

n − (α2
0nT

′
0)

2 = 0, (6.17)

and

cos (2ψn) = −α
2
0nT

′
0

2|µn|6 . (6.18)

The angle ψn can be shown to vary from π/3 at τ = 0 to π/4 for τ → ∞. Apply-
ing conditions (6.13) to the solution (6.11) leads to a relation between cn and dn,
namely

dn =
icn
2

λne
iψn − |µn|
λn sinψn

. (6.19)

The integral in (6.14) can be worked out since it comes into the solution later. It is∫ ∞
0

źRn(ź) dź =
cn

λ2
n

[
1− 2

λn

|µn| cosψn +
λ2
n

|µn|2
]
. (6.20)

6.3. The complete solution

Through equation (6.14), the flow in the boundary layer is completely determined.
Since T (0) = T (0)(z), taking the r-derivative of (6.14) indicates that the temperature

distribution in the solid, given by T
(0)

, is solely responsible for driving the boundary-
layer flow. The outer solution in general takes the form

T
(0)

r = rf̄(z) +
∂2

∂z2

∞∑
n=1

Qn(z)J1(α0nr), (6.21)

and results have been given already in (4.14), (4.15). Then, using (6.14) and (6.20), the
boundary-layer flow is fully determined, with

cn =
Kλ2

n|µn|2
α0nT

′
0[λ

2
n − 2λn|µn| cosψn + |µn|2]Q

′′′
n (0). (6.22)

Turning now to other interfacial boundary conditions, and noting that c does not
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change to leading order across the layer, (2.14) and (2.16) become

(T ′0 −MC ′0(0))h+ T́ =
M

G
c(b)

∣∣∣∣
z=0

+ Γr−1(rhr)r, (6.23)

[c(b)
z − (k − 1)Pe ′c(b)]z=0 = kGC ′0(0)Pe ′h, (6.24)

where the interfacial deflection is given by Z = BRa−1/6h(r). Eliminating h between
these two conditions,

(T ′0 −MC ′0(0)− ΓL2)(c(b)
rz − (k − 1)Pe ′c(b)

r ) = kGC ′0(0)Pe ′
(
M

G
c(b)
r − T́r

)
at z = ź = 0, (6.25)

where

L2F ≡ ∂

∂r

(
1

r

∂(rF)

∂r

)
. (6.26)

From the boundary-layer solution for T́ , this may be rewritten as

(T ′0 −MC ′0(0)− ΓL2)(c(b)
rz − (k − 1)Pe ′c(b)

r )− kGC ′0(0)Pe ′
(

1 +
M

G

)
c(b)
r

= −kGC ′0(0)Pe ′úźźź|ź=0 at z = 0. (6.27)

Using solution (6.11) and the properties of the solution, namely the evaluation of cn
given in (6.22), the quantity on the right-hand side of (6.27) is

úźźź
∣∣
ź=0

=

∞∑
n=1

SnQ
′′′
n (0)J1(α0nr), (6.28)

where

Sn =
[λ4
n − 4λn|µn|3 cosψn cos (2ψn) + |µn|4(2 cos (2ψn) + 1)]Kλn|µn|2

α0nT
′
0[λ

2
n − 2λn|µn| cosψn + |µn|2] . (6.29)

To complete the solution, as before we solve the equation for the solutal concen-
tration,

D2c(b)
r + Pe ′c(b)

rz = 0 (6.30)

with

c(b)
r =

∞∑
n=1

Cn(z)J1(α0nr) (6.31)

under condition (6.27). That process leads to

Cn = gne
−Pe′z/2 sinh (Gn(L1 − z)), (6.32)

where

Gn ≡
√

Pe ′2

4
+ α2

0n, gn =
kGC ′0(0)Pe ′Sn

Dn
Q′′′n (0), (6.33)

and

Dn =
[
(k − 1

2
)T ′0 − 1

2
Γα2

0n + C ′0(0)(kG+ 1
2
M)
]

Pe ′ sinh (GnL1)

+[T ′0 −MC ′0(0) + Γα2
0n]Gn cosh (GnL1). (6.34)
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Optimization for long ampoules is precisely as for the non-rotating case: choose
parameters to make C1 = 0, which can be done only by making Q′′′1 (0) = 0. All that
has changed here is the multiplier on Q′′′n (0), the scale of cr is still what it is for

axisymmetric cases at T = 0, namely O(BRa−1/6).
Though we have set up the problem to be solved for V (0), we have not written

down the solution since the thermal/solutal fields are decoupled from V (0).

6.3.1. Behaviour of Sn with τ

From (6.33), all effects of Taylor number variation in this parameter range are
buried in the quantity Sn given in (6.29). It is important to note how this parameter
varies with Taylor number. For small scaled Taylor number (τ → 0), |µn|, λn →
(α2

0nT
′
0)

1/6 and ψn → π/3, as noted above. Therefore,

Sn → α0nK
3(α2

0nT
′
0)

1/6
as τ→ 0. (6.35)

This result of course recovers previously obtained T ≡ 0 results (Foster 1997).
However, inspection of (6.16)–(6.18) indicates that for τ → ∞, |µn| ∼ (2τ)1/2, so that
ψn → π/4. In addition, λn → (α2

0nT
′
0/(4τ

2))1/2, and therefore

Sn ∼ K
2
√
T ′0
τ as τ→∞. (6.36)

The growth of Sn with τ at large τ gives cr of order BT/Ra1/2, suggesting that, for

T = O(Ra1/2) discussed in § 8, the interfacial deflection and radial variation in c
increase to O(B). That does, in fact, turn out to be the case!

Finally, large-n modes seem least affected by finite values of τ. It is easy to show
that, for τ = O(1), the behaviour of Sn for n→∞ is precisely that given by (6.35) for
τ = 0. The limiting form at large τ given in (6.36) is valid only for modes for which
τ � (α2

0nT
′
0)

1/6; then, for τ � (α2
0nT

′
0)

1/6, the approximation (6.35) is valid. In the
intermediate range, solution of the full equations (6.16)–(6.18) is required for large n.

Velocity scales for Regions IV–VI are again summarized in table 1.

7. Solutions for Ra1/3 �T� Ra1/2

In this parameter range, we explore the azimuthally varying segment of the flow
only; the averaged portion is not unlike what we detail below in § 8. Further, there
is a hint of the transition from O(Ra1/3) to O(Ra1/2) in § 6.3.1 for the axisymmetric
case. As discussed briefly in § 3, in particular in (3.6), the interfacial boundary layer
splits into a velocity layer – an Ekman layer, in fact – of width T−1/2, and a thicker
thermal layer, with thickness O(T/Ra1/2). It is this splitting of the layer that leads to
an increasing order in the segregation in this range.

7.1. Outer expansion

The outer expansion has a somewhat more complicated structure here, and proceeds
as

ũ =
1

Ra
Ũ (0) +

1

RaTŨ (1) +
T

Ra3/2
Ũ (2) + · · · , (7.1)(

T̃
c̃

)
=
T

Ra1/2

(
T̃ (0)

c̃(0)

)
+
T
Ra

(
T̃ (1)

c̃(1)

)
+
T2

Ra

(
T̃ (2)

c̃(2)

)
+ · · · . (7.2)
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Substitution into the equations of motion leads to

T̃ (0) + c̃(0) = 0, ∇2c̃(0) + Pe ′c̃(0)
z = 0. (7.3)

Then, to next order,

−2Ṽ
(0)

+ P̃ (1)
r = 0, 2Ũ

(0)
+ r−1P̃

(1)
θ = 0, P̃ (1)

z = T̃ (1) + c̃(1), W̃
(0)

= 0. (7.4)

At still the next level it is convenient to put it into the form

W̃
(1)

= 0, ∇2ζ̃(0) = 0. (7.5)

Finally, to next order,

T ′0W̃
(2)

= ∇2T̃ (0). (7.6)

The sidewall layers yield the condition

ζ̃(0) = 0 at r = 1. (7.7)

7.2. The Ekman layers

The thinner layer on the interface is an Ekman layer; the layer on z = L−1 is also an
Ekman layer. Details are not given here, but what is very well known is that there is
an outflow at the layer edge, so that there is a compatibility required of the outer-flow
velocity components at the boundaries. (See Greenspan 1964, for example.) Hence,

w = ± 1

2T1/2
ζ at z = 0, L1. (7.8)

Since it is easy to verify that no vertical velocity component of O(Ra−1T−1/2) is
possible, we conclude that

ζ̃(0) = 0 at z = 0, L1. (7.9)

Therefore, the solution of the problem for ζ̃(0), (7.5), is

ζ̃(0) ≡ 0. (7.10)

Thus, the solution for the leading-order flow in the melt is once again given by (4.29).

7.3. The thermal layer

The thermal variations do not occur in the Ekman layer, but across a layer described
by (3.6). The equations may be put into the somewhat more convenient form

∇2
hT +

4T2

RaT ′0
Tẑẑ = −∇2c̃(0)

∣∣∣∣
z=0

, (7.11)

T ′0w =
1

T2
Tẑẑ , (7.12)

where the scaling z = (T/Ra1/2)ẑ has been used. Writing T = (T/Ra1/2) ˆ̃T in the

layer, clearly w = (Ra−1/2T−1) ˆ̃w. The solution for the temperature utilizing boundary
condition (2.15) is, then, given by

ˆ̃T = Re

[ ∞∑
m=1

∞∑
n=1

Amn(ẑ)eimθJm(αmnr)

]
− c̃(0)|z=0, (7.13)
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where

Amn =KQ′′′mn(0)

bmn

e−bmn ẑ , bmn ≡
(
α2

mnRaT ′0
4T2

)1/2

, (7.14)

and αmn is the nth zero of J ′m(x) as before. The coefficients {Qmn(z)} are related to the

solutions of the ˜̄T (0) problem in z < 0, that is,

˜̄T (0) = Re

[ ∞∑
m=1

eimθ

(
rmām(z)

m
+

∂2

∂z2

∞∑
n=1

Qmn(z)Jm(αmnr)

)]
, (7.15)

and

Q′′′mn(0) =
χmnα

3
mn

sinh (αmnL2)

[
ām(−L2)− ām(−z̄I) cosh (αmn(L2 − z̄I))

+
ā′m
αmn

sinh (αmn(L2 − z̄I))
]
, (7.16)

and

χmn ≡ − 2Jm+1(αmn)

m(α2
mn − m2)αmn[Jm(αmn)]2

. (7.17)

Recall that {ām} are the Fourier series coefficients of the thermal boundary condition,
given in (2.23). Using a substitution like (6.31), we write

c̃(0) = Re

[ ∞∑
m=1

eimθ

∞∑
n=1

Cmn(z)Jm(αmnr)

]
, (7.18)

and we obtain the solution to the solute equation in a form similar to (6.32):

Cmn = `mne−Pe′z/2 sinh (νmn(L1 − z)), νmn =

√
Pe ′2

4
+ α2

mn . (7.19)

Writing the interfacial deflection as Z̃ = TRa−1/2h(r), boundary conditions (2.14),
(2.15) and (2.16) may be combined to give a single condition, on c̃(0), namely

(T ′0 −MC ′0(0) + Γ∇2
h)(c̃

(0)
z − (k − 1)c̃(0))

= kGC ′0(0)Pe ′
[(

1 +
M

G

)
c̃(0) − ˆ̃T |ẑ=0

]
at z = 0. (7.20)

Substitution of (7.19) into (7.20) leads to the result

`mn = kGPe ′C ′0(0)
KQ′′′mn(0)

αmnDmn

( T2

RaT ′0

)1/2

, (7.21)

Dmn = Pe ′
[
(k − 1

2
)(T ′0 + Γα2

mn) + (kG+ 1
2
M)C ′0(0)

]
sinh (νmnL1) + νmn cosh (νmnL1).

(7.22)

Again, as in the previous section, it is clear that as T becomes O(Ra1/2), the solutal
variations increase to O(B).

Since Cmn is proportional to Q′′′mn(0), optimization is precisely the same as for the
T ≡ 0 azimuthally varying case: require Q′′′11(0) = 0 (Foster 1999).
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8. Axisymmetric solutions for T = O(Ra1/2)

There is a significant change in axisymmetric flow structure when the Taylor
number gets to this level, because the Coriolis force is now large enough to alter
the O(1) thermal perturbation, and making the meridional flow structure much more
complicated – the dependence of the leading-order term in the T series on z alone
disappears. We proceed first to the outer expansion, then to the boundary-layer
structure. In this section, as in an earlier one, since there is no ambiguity, we do not
use the 〈 〉 notation.

8.1. Outer expansion

Away from any boundary layers, because of the inflow requirements at the sidewall,
we write

(u, w) = Ra−1(U(0),W (0)) + Ra−5/4(U(1),W (1)) + · · · , (8.1)

v =T−1V (0) + Ra−3/4V (1) + · · · , (8.2)

T = T (0) + Ra−1/4T (1) + · · · , c = c(0) + Ra−1/4c(1) + · · · . (8.3)

The resulting equations are

∇ ·U (0) = 0, −2V (0) + P (0)
r = 0, 2

T2

Ra
U(0) = D2V (0), (8.4)

P (0)
z = T (0) + c(0), T ′0W

(0) = ∇2T (0), ∇2c(0) + Pe ′c(0)
z = 0. (8.5a–c)

Utilizing the thermal and azimuthal equations, it is possible to obtain a relatively
simple relation between the two meridional components:

4T2

T ′0Ra
U(0)
z = W (0)

r − Pe ′

T ′0
c(0)

rz . (8.6)

For convenience in what follows, let 4T2/(T ′0Ra) ≡ S2. Use of continuity gives the
following partial differential equation for the radial velocity component:

∂

∂r

(
1

r

∂(rU(0))

∂r

)
+ S2 ∂

2U(0)

∂z2
= −Pe ′

T ′0

∂3c(0)

∂z2∂r
. (8.7)

To proceed to a solution, we begin by writing the solutal concentration in the same
way as in § 5,

c(0)
r =

∞∑
n=1

Cn(z)J1(α0nr), (8.8)

and, from substitution, into (8.5c), leads to precisely the same result – (6.32), repeated
here simply for convenience:

Cn = gne
−Pe′z/2 sinh (Gn(L1 − z)), Gn ≡

√
Pe ′2

4
+ α2

0n. (8.9)

Then, the radial velocity can be written as

U(0) =
rfz

T ′0
+

∞∑
n=1

A′′n(z)J1(α0nr), (8.10)

A′′n − α2
0n

S2
An = −rnfz

T ′0
− Pe ′

T ′0
Cn, (8.11)
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where rn is the Fourier–Bessel series coefficient for the function r. Assuming that the
meridional velocity components are fully determined, by solution of (8.11) and use of
(8.6), the thermal problem can be posed most usefully in the form

D2T (0)
r = T ′0S

2U(0)
z − Pe ′c(0)

rz , (8.12)

and solving,

T (0)
r =

∞∑
n=1

B′n(z)J1(α0nr),=⇒ B′′n − α2
0nBn = T ′0α

2
0nAn(z)− S2Pe ′Cn(z), (8.13)

T̄ (0)
r =

∞∑
n=1

B̄′n(z)J1(α0nr),=⇒ B̄′′n − α2
0nB̄n = 0. (8.14)

Finally, the swirl velocity is given by

V (0) =
2T2

Ra

∞∑
n=1

Cn(z)J1(α0nr), C ′′n − α2
0nCn =

α2
0n

S2
An(z)− Pe ′

T ′0
Cn. (8.15a,b)

Actually, not all of these quantities are independent, and it is easily verified that

4T2

Ra
C ′n = B′n + Cn. (8.16)

8.1.1. Boundary conditions

It is immediately evident that V (0) must vanish at z = 0 and z = L1, since a
non-zero value leads directly from the Ekman suction law to vertical velocities at
the Ekman layer edges of O(Ra−3/4), which is incompatible with outer scales on the
temperature. Hence,

V (0)(r, 0) = V (0)(r, L1) = 0 =⇒ Cn(0) = Cn(L1) = 0. (8.17)

There are the obvious conditions on the temperature at the upper and lower
boundaries,

B′n(L1) = B̄′n(−L2) = 0. (8.18)

Equation (8.16) then implies that

C ′n(L1) = 0. (8.19)

Three conditions derived from the thermal/solutal conditions on the interface
delineated in § 2.2, for an interfacial deflection Z = Bh(r) can be put into the form

(T̄ ′0−MC ′0(0))T (0)
r −(T ′0−MC ′0(0))T̄ (0)

r =
M

G
(T̄ ′0−T ′0)c(0)

r +ΓL2[T̄ (0)
r −T (0)

r ], (8.20)

and

c(0)
rz − (k − 1)Pe ′c(0)

r = kPe ′GC ′0(0)
T̄ (0)
r − T (0)

r

T ′0 − T̄ ′0
, (8.21)

T (0)
z =KT̄ (0)

z , (8.22)

all to be applied on z = 0.
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8.1.2. Toward the outer solution

To proceed to the solution, it appears simplest to combine (8.11) and (8.15b) into
a single equation for Cn:(

d2

dz2
− α2

0n

S2

)(
d2Cn

dz2
− α2

0nCn

)
= −α

2
0nrnfz

S2T ′0
− Pe ′

T ′0
gne
−Pe′z/2

×
[(

Pe ′2

2
+ α2

0n

)
cosh (Gn(L1 − z))− Pe ′Gn sinh (Gn(L1 − z))

]
. (8.23)

Three conditions on the solution for Cn are given above in (8.17) and (8.19).
The solution in the solid can be written down with one arbitrary coefficient set,
{`n}, from which we can write

B̄′n(0) = `n sinh (α0nL2)− rnf(−L2) cosh (α0nL2)

+rnf(−z̄I) cosh (α0nL2) +
rnfz

α0n

sinh (α0nL2), (8.24)

and

B̄′′n (0) = α0n`n cosh (α0nL2)− α0nrnf(−L2) sinh (α0nL2)

+rnα0nf(−z̄I) sinh (α0nL2) + rnfz cosh (α0nL2). (8.25)

Now, the boundary conditions (8.20)–(8.22) at z = 0 become[
Gn coth (GnL1) + (k + 1

2
)Pe ′ +

kPe ′GC ′0(0)

T ′0 − T̄ ′0
]
gn sinh (GnL1)

+
kPe ′GC ′0(0)

T ′0 − T̄ ′0
(
B̄′n(0)− 4T2

Ra
C ′n(0)

)
= 0, (8.26)

4T2

Ra
C ′′n (0) +

(
Pe ′

2
+ Gn coth (GnL1)

)
gn sinh (GnL1) =KB̄′′n (0), (8.27)

and, finally,(
T̄ ′0 −MC ′0(0)− α2

0nΓ
) 4T2

Ra
C ′n(0) =

([
1 +

M

G

]
T̄ ′0 −MC ′0(0)− M

G
T ′0 − α2

0nΓ

)
× gn sinh (GnL1) + (T ′0 −MC ′0(0)− α2

0nΓ )B̄′n(0).

(8.28)

The solution can now proceed as follows. The solution to equation (8.23) is the sum
of the homogeneous solution, with four unknown constants, and a particular solution
with multiplier gn. The quantities {`n} are also not known, so that six conditions in
total are required. Three of those conditions are given in (8.17) and (8.19) as noted
above. Equations (8.26)–(8.28) constitute the other three conditions, involving as they
do only {Cn(z)} and its derivatives, and the sets of constants {gn, `n}.

The complexities of the solution are indeed great, and its completion is not given
here.
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8.2. Interfacial boundary layer

This solution, atT = O(Ra1/2), represents a radical shift in structure from all smaller
values of Taylor number in that the boundary layer on the interface is now passive:
it plays no primary role in determining the solutal segregation; all of that has been
relegated to the outer flow, and as such the segregation has risen in magnitude over
that for smaller values of the Taylor number. The surface boundary layer is only an
Ekman layer, and we include some details of its solution only for completeness.

The vertical velocity at the interfacial layer’s edge is (Ra−1), so that implies the
need for the next term in the expansion for v in (8.2) to be O(Ra−3/4). Hence, we
write, in the interfacial layer, (u, v) = Ra−3/4(ū, v̄), w = Ra−1w̄; the boundary-layer
coordinate is z =T−1/2z̄. The horizontal momentum equations then have the simple
(leading-order) solution

ū+ iv̄ = iv̄e[1− e−(1+i)z̄], (8.29)

where v̄e is the edge velocity. In the usual way, integration of the continuity equation
leads to the vertical velocity component in the layer,

w̄ =
(rv̄e)r

2r
Re ((i + 1)(1− e−(1+i)z̄)), (8.30)

from which, on matching to the outer expansion, we obtain the relationship

W (0) =
1

2r

d(rV (1))

dr
at z = 0. (8.31)

The thermal variation in the layer is found by writing

T = T (0)|z=0 + Ra−1/4T (0)
z |z=0z̄ + Ra−1/2[ 1

2
T (0)
z |z=0z̄

2 + T̄ (r, z̄)] + · · · . (8.32)

Then, the equation satisfied by T̄ is

T̄z̄z̄ = T ′0(w̄ − w̄e). (8.33)

Integrating twice,

T̄ = T̄ |z̄=0 + T ′0
(rv̄e)r

2r

[
1

2
− 1√

2
e−z̄ cos ( 1

4
π + z̄) + z̄(cos z̄ − 1

2
sin z̄)e−z̄

]
. (8.34)

What we see is that, as tacitly assumed in the previous section, there is no change
in T across this layer until O(Ra−1/2), so that values of T and Tz at the interface
are simply the values from the outer flow that penetrate without change through
this layer. It is evident, as well, that if one works out the next order terms in the
asymptotic series, there is a change in Tz at that level.

Further note that equation (8.31) provides the boundary condition on the second-
order outer solution.

Though the final details of the complicated solution in this parameter range are not
given here, the qualitative results are important, particularly the scalings summarized
in table 1. What has happened at thisT level is that the thermal variations necessary
to satisfy the melting conditions at z = Z occur over the entire interior of the melt
and are not confined to a thermal boundary layer at the crystal–melt interface, and
therefore the concentration and interfacial displacement perturbations are greatly
enhanced.
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9. Axisymmetric solutions for T = O(Ra)

It appears that the material segregation has increased with T to O(B), and that
increased rotation cannot reduce it. As a final check of that situation, we explore the
case for which rotation is truly dominant: T = O(Ra).

9.1. The outer expansion

In this parameter range, the outer expansions take the form(
u
w

)
=T−3/2

(
U(0)

W (0)

)
+T−2

(
U(1)

W (1)

)
+ · · · , (9.1)

v =T−1V (0) +T−3/2V (1) + · · · , (9.2)(
T
c

)
=

(
T (0)

c(0)

)
+T−1/2

(
T (1)

c(1)

)
+ · · · . (9.3)

Substitution into the equations of motion (2.5)–(2.8) gives the first-order results

2V (0)
z = T (0)

r + c(0)
r , U(0) = 0, W (0)

z = 0, ∇2T (0) = 0. (9.4a–d )

The usual equation for c(0) is (4.4c), and is not written down here.
To next order, we have

2V (1)
z = T (1)

r + c(1)
r , U(1) = D2V (0), ∇2T (1) = T ′0

Ra

TW (0). (9.5a–c)

The boundary layers on z = Z+ and z = L−1 are Ekman layers, and putting these
expansions into the usual Ekman suction law gives

W (0) = ∓1

2

1

r

∂

∂r
(rV (0)) on z = 0, L1. (9.6)

Integrating (9.4a) in z, from the interface to the top of the ampoule, then utilizing
the Ekman conditions (9.6), we have

W (0) = 1
2

[
T (0)
z |z=L1

z=0 + c(0)
z |z=L1

− [c(0)
z + Pe ′c(0)]z=0

]
. (9.7)

Interestingly, it is easily shown from this result that∫ L1

0

rW (0) dr = 0 =⇒ V (0)(1, z) = 0. (9.8)

The latter result follows directly from (9.6). Interestingly, there is, then, no net vertical
transport of fluid in the interior.

So, once the solutions for T (0) and c(0) are complete, the vertical velocity in the core
flow can be worked out from (9.7). Slow, vertical flow is characteristic of rotating
flows, and, interestingly, drift velocity is here determined solely by the thermal and
concentration fields. Once that is known, then the next order thermal perturbation
may be found from (9.5c). The leading-order swirl is determined from (9.4a), then
utilized to work out the (slow) radial component from (9.5b); in fact, the next order
velocity is entirely determined as

U(1) = −Pe ′c(0)
r , W (1) = Pe ′c(0)

z + Pe ′2c(0). (9.9)

Writing the interfacial deflection as Z = Bh(r), the usual boundary conditions on
the thermal fields take the form

(T ′0 − T̄ ′0)h+ T (0) − T̄ (0) = 0, T (0)
z =KT̄ (0)

z at z = 0. (9.10a,b)
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As we have seen in (9.4) above, T (0) – and of course T̄ (0) – are harmonic, subject to
these two joining conditions, and

T (0)
r = f(z), T̄ (0)

r = f̄(z) on r = 1. (9.11)

Of course, the solution cannot be independently completed, since h is not known. The
other conditions, involving the concentration field, become

(T ′0 −MC ′0(0))h+ T (0) =
M

G
c(0) + Γ∇2

hh, (9.12)

c(0)
z − (k − 1)Pe ′c(0) = kC ′0(0)GPe ′h. (9.13)

We proceed now to the solution. Eliminating h among (9.10a), (9.12) and (9.13), we
obtain the coupled conditions on the thermal and concentration fields,

(T ′0 −MC ′0(0))T̄ (0)
r − (T̄ ′0 −MC ′0(0))T (0)

r =
M

G
(T ′0 − T̄ ′0)c(0)

r + ΓL2(T̄ (0)
r −T (0)

r ) (9.14)

and

c(0)
rz − (k − 1)Pe ′c(0)

r = kC ′0(0)GPe ′
T̄ (0)
r − T (0)

r

T ′0 − T̄ ′0
, (9.15)

which are to be utilized together with (9.10b).
It is convenient to write the solutions in the form(

T̄ (0)
r

T (0)
r

)
=

(
rf̄(z)
rf(z)

)
+

∂2

∂z2

∞∑
n=1

(
An(z)
Bn(z)

)
J1(α0nr). (9.16)

The concentration is given again by (8.8) and (8.9).
Substitution of (9.16) into the Laplace equations and solving gives the following

rather complicated result for the solute concentration at the solidifying boundary:

Cn(0) =
α2

0nGrnφn

M(T ′0 − T̄ ′0)
(Λn − 1) (α2

0nΓ −MC ′0(0)) + T ′0(Λn −K)

KΛn sinh (α0nL1) cosh (α0nL2) + sinh (α0nL2) cosh (α0nL1)
,

(9.17)

where

φn =K f̄(−z̄I)
α2

0n

cosh (α0n(L2 − z̄I)) sinh (α0nL1)−K f̄(−L2)

α2
0n

sinh (α0nL1)

+
f(zI )

α2
0n

cosh (α0n(L1 − zI )) sinh (α0nL2)− f(L1)

α2
0n

sinh (α0nL2)

−K f̄′

α3
0n

sinh (α0n(L2 − z̄I)) sinh (α0nL1) +
f′

α3
0n

sinh (α0n(L1 − zI )) sinh (α0nL2),

(9.18)

Λn =
T̄ ′0 −MC ′0(0) + α2

0nΓ + ΦnkPe ′MC ′0(0)

T ′0 −MC ′0(0) + α2
0nΓ + ΦnkPe ′MC ′0(0)

, (9.19)

and

Φn =

[
Gn coth (GnL1) +

Pe ′

2
(k − 1)

]−1

. (9.20)
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The complexities of this result are more easily penetrable for a special case:
L1 ≡ L2, zI ≡ z̄I . In such a case, we have the simpler result

Cn(0) =
α2

0nGrn

M(T ′0 − T̄ ′0)
(Λn − 1)(α2

0nγ −MC ′0(0)) + T ′0(Λn −K)

(KΛn + 1) cosh (α0nL1)

×
[(Kf̄(−zI )

α2
0n

+
f(zI )

α2
0n

)
cosh (α0n(L1 − zI ))− Kf(−L1)

α2
0n

+

(
f′

α3
0n

− Kf̄′

α3
0n

)
sinh (α0n(L1 − zI ))− f(L1)

α2
0n

]
. (9.21)

From this expression, it is evident that no geometrical optimization for long
ampoules of the kind found for T ≡ 0 flows (Tanveer 1994; Foster 1997, 1999) is
possible here. Essentially, the condition found previously chooses parameters that
make g1 = 0. In this expression, the first term in the square bracket is dominant
for large L1, with apparently nothing to balance it; further, its coefficient cannot be
zero. A more detailed examination of g1, inserting the proper expressions for thermal
gradients, confirms that conclusion. Nonetheless, lengthening the ampoule, holding
other parameters fixed, leads to great improvement. For L1 and L2 large,

Cn(0) ∼ Grn

M(T ′0 − T̄ ′0)
(Λn − 1)(α2

0nΓ −MC ′0(0)) + T ′0(Λn −K)

KΛn + 1

× [Kf̄(−L2)e
−α0nz̄I + f(L1)e

−α0nzI
]
. (9.22)

9.2. The sidewall boundary layer

We know that there are two possible layers in these rotation-dominated flows. The
outer ‘quarter layer’ is absent here, however. Doing the usual ‘third layer’ scalings, we
write r − 1 =T−1/3η, and the equations of motion take a familiar form

∂3v

∂η3
= −2

∂w

∂z
,

∂3w

∂η3
= 2

∂v

∂z
− 2

∂ve

∂z
, (9.23)

where the final term in the second equation is not present in the usual 1/3-layer
equation, and is present here because of the ‘thermal wind’ interior balance. We saw
in (9.8) that V (0) = 0 at r = 1, and because there is no net vertical transport in the
interior flow, the first terms in the asymptotic expansion in this boundary layer are
T−3/2(v(0), w(0)).

In a familiar way best exemplified by Moore & Saffman (1969), we integrate the
first of these two equations in z to yield

d3

dη3

∫ L1

0

v(0) dz = 0, (9.24)

where we have used the Ekman conditions at both z = 0 and z = L1, which require
that w(0) = 0 at both locations. This first term in the layer series matches to V (0)(1, z)
in the outer expansion. Integrating (9.24) and matching,∫ L1

0

v(0) dz = 0. (9.25)
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There is no difficulty in working out the solution, which is most easily written down
as

w(0)(η, z)

W (0)(1, z)
= 1−

∞∑
n=1

Gn(η) sin

(
nπz

L1

)
, (9.26)

Gn(η) =
1− (−1)n

2nπ

[
eγnη + cos

(√
3

2
γnη

)
eγnη/2 +

1√
3

sin

(√
3

2
γnη

)
eγnη/2

]
,

γn =

(
2nπ

L1

)1/3

. (9.27)

The velocity magnitudes for this regime, for Regions IV–VI of figure 2, are entered
in table 1.

10. Conclusions
10.1. Parametric restrictions

The restrictions on the relative orders of the many parameters in large-Ra Bridg-
man problems are thoroughly discussed elsewhere (Foster 1997, 1999). The severest
restriction is on the Biot number:

B � 1. (10.1)

However, the solutions presented here, for all the values of T, are proportional to
Q′′′n (0), and if the ampoule is long, then Q′′′n (0) scales with exp (−αmnzI ). Since this factor
is multiplicative in all solutions, this ‘exponential quenching’ due to the insulated zone
reduces the small-Biot-number requirement to the much milder one,

Be−α11zI � 1, forL1, L2 � 1, (10.2)

since α11 is the smallest of the zeros of J ′m. Recall, too, from § 2.2.1 that this Biot
number is replaced by a modified Biot number when effects of thin, finite ampoule
walls are incorporated. Other restrictions have already been noted in (2.9), (2.11) and
(2.12).

10.2. Summary

As an overview of what happens over the range of Taylor numbers considered here,
table 1 evidences a number of interesting patterns arising from the presence of
rotation; the two most significant are as follows:

For Taylor numbers larger than Ra1/6, the distinction between Regions V and VI
in figure 2 begins to disappear, as swirl motion arises throughout the melt. Real
structural changes in the thermal field arise at still larger Taylor numbers, of order
Ra1/2 and larger: at smaller Taylor numbers, the interior balance in the melt is
hydrostatic – which strongly constrains the flow-field structure; as the Taylor number
builds, eventually a ‘thermal wind’ balance replaces the simpler hydrostatic constraint
when T = O(Ra1/2), generating further mixing in the melt across its entire height.
Thus, the rotation eliminates the upper- and lower-eddy flow structure familiar in
other works. (See Ardonato & Brown 1987, for example.)

The ‘thermal layer’ begins to thicken at T = O(Ra1/3), giving rise to larger
interfacial deflection and larger lateral dopant gradient for this and larger T.

The evolution of the flow fields and solidification pattern withTmay be understood
in a general fashion that makes it possible to anticipate what stirring methods have
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a chance of improving segregation. The solutal distribution at the interface, which
freezes into the crystal, is governed to leading order by heat flux from below (Region
VII) into the melt. That flux is always O(B), so that means that ∂T/∂z in the melt,

near z = Z+, must be of the same order. For all O(Ra1/3) Taylor numbers, that layer
has width Ra−1/6, so the thermal (and solutal) perturbation must be O(BRa−1/6) in
the layer. However, as we saw in § 7, forT in the range between Ra1/3 and Ra1/2, the
layer across which the temperature has a non-trivial variation fattens to a width of
T/Ra1/2, thus making the lateral concentration gradient larger, up to O(BT/Ra1/2).

Once T reaches O(Ra1/2), as delineated in § 8, the thermal variations occur on outer
scales – even though there is still a velocity boundary layer on the interface. Since the
z scale has become O(1), the thermal perturbation is now O(B).

We can now anticipate that for any stirring technique (like ACRT, for example,
in Moon et al. 1997) to improve segregation, the interfacial boundary layer must be
thinner than Ra−1/6, or the structure at that layer must be dramatically altered in a
way that changes the interfacial concentration.

Clearly, in the case of the addition of rigid rotation examined here, we verify what
has been recently reported in a numerical study by Lee & Pearlstein (1998): there
is no reduction in crystalline segregation with rotation. In fact, large rotation makes
it worse! However, the thickening of the interfacial layer may indeed, as Weber et
al. (1990) have indicated, delay the onset of some interfacial instabilities to larger
Rayleigh numbers. That matter is discussed briefly in § 10.3.

Weber et al. (1990) examined the changes in performance in a situation for which
the rotation vector is at right angles to the vertical Bridgman axis. A preliminary
investigation of that situation shows no real improvement of the solutal distribution,
at least for Ra � 1. However, it appears that rotating at an angle to the vertical axis
(Weber et al. 1990; Friedrich et al. 1996) is a different matter: such a configuration
seems to increase the isolation of the upper and lower eddies – rather than decreasing
that isolation as it does for the geometrical arrangement studied here – so there is
hope that the overall performance may improve. Analysis of that situation will be
reported subsequently.

Optimization conditions found by Tanveer (1994) remain valid for all Taylor
numbers less than Ra1/2. However, beyond that value of T, we have seen that no
such optimization is possible.

Finally, the rotation rates considered here in the various parameter regimes are
actually quite low. If the Rayleigh number is 109, for example, for typical alloys in
an ampoule one or two centimetres in radius, the rotation rates corresponding to
T = O(Ra1/3) are between 2 and 5 r.p.m.

10.3. Effects on morphological instability

We noted in the introduction that Weber et al. (1990) suggest that Coriolis effects
might improve interfacial stability. It turns out in the case of the Bridgman solutions
that the neutrally stable condition is given by the zero of the denominator of the
expression for the surface concentration gradient, cr , or the interfacial deflection
gradient, hr . Foster (2000) has found that the stability condition comes directly from
(4.21) for the no-rotation case, and is

T ′0
MC ′0(0)

> 1− kPe ′(1 + G/M)

Gn + (k − 1
2
)Pe ′

− α2
0nΓ

MC ′0(0)

[
1− kPe ′

Gn + (k − 1
2
)Pe ′

]
, (10.3)
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for axisymmetric modes only; the notation is that of § 4.1. Clearly, for stability, this
inequality must be satisfied for any n. The quantity on the left-hand side can be
rewritten as

K
L2 +KL1

∆T

(1− k)m∆c∗
D

Va
, (10.4)

so this requirement puts an upper limit on the pulling speed in the device, as is well
known. On the other hand, with significant effects of rotation, results from § 5, in
particular the zero of the denominator of (9.17), leads to a different criterion for
stability:

T ′0
MC ′0(0)

>
K+ 1

K2 + 1

[
1− kPe ′

Gn + 1
2
Pe ′(k − 1)

− α2
0nΓ

MC ′0(0)

]
, (10.5)

for long ampoules.
The critical T ′0 values are shown in figures 4 and 5. For a given apparatus, T ′0 must

be larger than any data point in the figures to guarantee stability. Note that at small
Péclet number, there is virtually no change in the stability behaviour – so stability
seems guaranteed for all T ′0 with or without rotation. At larger pulling speeds (larger
Pe ′), a stable interface at a particular value of T ′0 may in fact be destabilized with
rotation! Hence, from this cursory and admittedly preliminary result, it appears that
adding rotation does not permit larger pulling speeds.
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